Journals

2025

Sharma, P, A Garg, Nidhi, V Sharma. 2025. Amelioration of Ulcerative Colitis in BALB/c Mice by Probiotic‐Fermented Aegle marmelos Juice. International Journal of Food Science 2025(1):5288406.


Nazir, S, SB Dhull, V Sharma. 2025. Extraction and characterization of omega fatty acids (as fixed oil) from various plants seeds. Journal of Food Measurement and Characterization, 1–14.

Chen, H, Wen, C, Zhang, L, Ma, Z, Liu, T, Wang, G, Yu, H, C Yang, Yuan, X. 2025. Pest-PVT: A model for multi-class and dense pest detection and counting in field-scale environments. Computers and Electronics in Agriculture 230:109864.

Ma, H, Liu, Y, Jiang, S, Zhao, Y, C Yang, An, X, Zhang, K, Cui, H. 2025. Winter wheat canopy height estimation based on the fusion of LiDAR and multispectral data. Agronomy 15(5):1094.

Mulla, D, Bohman, BJ, Rosen, CJ, Miao, Y. 2025. Next-generation nitrogen management in potato: Merging agronomy, remote sensing, and AI. Agricultural Systems 212:103778.


Zermas, D, Bazakos, M, D Mulla, Papanikolopoulos, N. 2025. Deep neural network architecture for maize phenotype prediction from 3D plant models. Computers and Electronics in Agriculture 218:108563.

2024

Mondal, A, T Kumar, V Sharma, S Roy. 2024. Development of Probiotic Functional Food and Evaluation of Its Functional Properties. Food Bioscience 104919.


Purohit, SR, V Sharma, M Kumari, K Muthukumarappan, J Kane-Potaka. 2024. Future Crops and Processing Technologies for Sustainability and Nutritional Security. CRC Press.

Sanaeifar, A, C Yang, Min, A, Jones, CR, Michaels, TE, Krueger, QJ. 2024. Noninvasive early detection of nutrient deficiencies in greenhouse-grown industrial hemp using hyperspectral imaging. Remote Sensing 16(1):187.

Zhang, Z, C Yang, Wang, Y, Zhang, Z. 2024. Economic evaluation of a low-cost fresh market apple harvest-assist unit. Mechanical Harvest of Fresh Market Apples: Progress Over the Past Decades, 39–54.

Yang, W, Yang, C, D Mulla, Paiao, GD, Nigon, TJ, Fernández, FG. 2024. Hybrid deep learning models for predicting corn yield using multi-temporal hyperspectral UAV imagery. Computers and Electronics in Agriculture 214:108100.


Paiao, GD, Yang, C, D Mulla, Fernández, FG, Nigon, TJ. 2024. UAV-based hyperspectral remote sensing for monitoring nitrogen use efficiency in corn. Precision Agriculture 25(2):341–358.


Tahir, M, D Mulla. 2024. Long-term nitrate reduction potential of perennial cropping systems in vulnerable groundwater regions of the Upper Midwest. Journal of Environmental Quality 53(1):14–27.


Mulla, D, Zermas, D, Papanikolopoulos, N, Kaiser, D. 2024. Real-time nitrogen deficiency detection in corn using integrated multispectral imaging and edge computing. Remote Sensing Applications: Society and Environment 35:100988.


Gomaa, MN, D Mulla, Galzki, J. 2024. Forecasting agricultural droughts using MODIS and machine learning in semi-arid regions. Remote Sensing 16(5):895.


Jordan, N, Slotterback, CS, D Mulla, Kne, L. 2024. Adaptive geodesign for resilient agricultural landscapes: Lessons from a decade of practice. Landscape and Urban Planning 247:104607.

2023


Dong, R., Miao, Y., Berry, P., Wang, X., Yuan, F., Kusnierek, K., ... Sterling, M. 2023. In-season prediction of maize stem lodging risk using an active canopy sensor. European Journal of Agronomy 151:126956.


Khan, R.M.A., Mahmood, S.A., Miao, Y., & Rasheed, M.U. 2023. Python Driven Pathways for Wheat Cultivation Incorporating Physico-Climatic Parameters of Growth. Journal of Agricultural Science and Technology 25(4):899–909.


Wang, T., Jin, H., Sieverding, H., Kumar, S., Miao, Y., Rao, X., ... Cheye, S. 2023. Understanding farmer views of precision agriculture profitability in the U.S. Midwest. Ecological Economics 213:107950.


Liang, J., Ren, W., Liu, X., Zha, H., Wu, X., He, C., ... Miao, Y., Pan, Q. 2023. Improving nitrogen status diagnosis and recommendation of maize using UAV remote sensing data. Agronomy 13(8):1994.


Shao, H., Miao, Y., Fernández, F.G., Kitchen, N.R., Ransom, C.J., Camberato, J.J., ... Shanahan, J.F. 2023. Evaluating critical nitrogen dilution curves for assessing maize nitrogen status across the U.S. Midwest. Agronomy 13(7):1948.


Wang, X., Miao, Y., Dong, R., & Kusnierek, K. 2023. Minimizing active canopy sensor differences in nitrogen status diagnosis and in-season nitrogen recommendation for maize with multi-source data fusion and machine learning. Precision Agriculture 24:2549–2565.


Onojeghuo, A.O., Miao, Y., & Blackburn, G.A. 2023. Deep ResU-Net convolutional neural networks segmentation for smallholder paddy rice mapping using Sentinel-1 SAR and Sentinel-2 optical imagery. Remote Sensing 15(6):1517.


Bohman, B.J., Culshaw-Maurer, M.J., Abdallah, F.B., Giletto, C., Bélanger, G., Fernández, F.G., ... Rosen, C. 2023. Quantifying critical N dilution curves across G×E×M effects for potato using a partially-pooled Bayesian hierarchical method. European Journal of Agronomy 144:126744.


Miao, Y. 2023. Precision Nutrient Management. In: Encyclopedia of Digital Agricultural Technologies, pp. 1054–1061. Springer.


Kusnierek, K., Miao, Y., Lu, J., Wang, X., Zha, H., Dong, R., & Zhang, J. 2023. Developing precision nitrogen management strategies for different crops and scales of farming systems in North China. In: Innovation for Environmentally-friendly Food Production and Food Safety in China, pp. 5–26. Springer.


Lu, J., Miao, Y., Mizuta, K., Negrini, R., Ona, A.G.M., & Quinn, D. 2023. Developing a machine learning-based in-season site-specific nitrogen recommendation strategy for corn using satellite remote sensing and multi-site-year on-farm trial data. ASA-CSSA-SSSA International Annual Meeting, St. Louis, MO, USA.

Tiwari, A, S Kumar, G Choudhir, G Singh, U Gangwar, V Sharma, et al. 2023. Bioactive metabolites of edible mushrooms efficacious against androgenic alopecia. Journal of Herbal Medicine 36:100611.


Hanan, E, N Hasan, S Zahiruddin, S Ahmad, V Sharma, FJ Ahmad. 2023. Utilization of Quince Peel and Its Cardioprotective Potential. ACS Omega 8(43):40036–40050.


Sharma, P, V Sharma, N Agarwal. 2023. Characterization of Phytoconstituents of Aegle marmelos Correa. Current Research in Nutrition and Food Science.


Bhardwaj, A, N Sharma, T Alam, V Sharma, JK Sahu, H Hamid, V Bansal. 2023. Chitosan and Beeswax Coated Biodegradable Cellulose Paper. [Journal unspecified].

Sanaeifar, A, C Yang, de la Guardia, M, Zhang, W, Li, X, He, Y. 2023. Proximal hyperspectral sensing of abiotic stresses in plants. Science of The Total Environment 861:160652.

Mahdavian, A, C Yang. 2023. Acoustic signal for poultry health monitoring. Encyclopedia of Digital Agricultural Technologies, 1–8.

Wen, C, Ma, Z, Ren, J, Zhang, T, Zhang, L, Chen, H, Su, H, C Yang, Chen, H. 2023. A generalized model for accurate wheat spike detection and counting in complex scenarios. Scientific Reports 14(1):24189.

Yang, W, Yang, C, D Mulla, Paiao, GD, Nigon, TJ, Fernández, FG. 2023. Deep learning improves early prediction of corn biomass and nitrogen uptake using hyperspectral imagery. Remote Sensing 15(4):1024.


Paiao, GD, Yang, C, D Mulla, Fernández, FG, Nigon, TJ. 2023. Comparison of methods to estimate leaf nitrogen content in corn from aerial hyperspectral imagery. Agronomy 13(2):331.


Tahir, M, D Mulla. 2023. Assessing future climate impacts on nitrate leaching in irrigated agricultural landscapes using process-based modeling. Environmental Modelling & Software 162:105641.


Gomaa, MN, Alhazmi, NM, Galzki, J, D Mulla. 2023. Assessing desalination vulnerability using ocean color remote sensing and hydrodynamic modeling: Red Sea case study. Science of the Total Environment 857:159435.


Zermas, D, Papanikolopoulos, N, Bazakos, M, D Mulla, Morellas, V. 2023. An integrated system for phenotypic trait estimation using 3D imagery and deep neural networks. Sensors 23(3):1156.


Mulla, D, Jordan, N, Slotterback, CS, Kne, L. 2023. Co-designing multifunctional landscapes: A participatory geodesign approach. In Sustainable Agricultural Landscapes, Springer, 183–203.


Rosen, CJ, Bohman, BJ, D Mulla, Miao, Y. 2023. Variable-rate nitrogen management improves efficiency and sustainability in potato production. Agronomy Journal 115(6):2510–2523.


Mulla, D, Feyereisen, GW, Strock, JS, Spokas, KA, Ranaivoson, A. 2023. Bioreactor designs for dual nutrient removal: A review. Agricultural Water Management 279:108242.

2022


Li, F., Miao, Y, Chen, X., Sun, Z., Stueve, K., & Yuan, F. 2022. In-season prediction of corn grain yield through PlanetScope and Sentinel-2 images. Agronomy 12(12):3176.


Lu, J., Dai, E., Miao, Y, & Kusnierek, K. 2022. Improving active canopy sensor-based in-season rice nitrogen status diagnosis and recommendation using multi-source data fusion with machine learning. Journal of Cleaner Production 380:134926.


Li, Y., Si, Z., Miao, Y, & Zhou, L. 2022. How does the concept of guanxi-circle contribute to community building in alternative food networks? Six case studies from China. Behavioral Sciences 12(11):432.


Li, X., Ata-UI-Karim, S.T., Li, Y., Yuan, F., Miao, Y, Yoichiro, K., Cao, Q. 2022. Advances in the estimations and applications of critical nitrogen dilution curve and nitrogen nutrition index of major cereal crops: A review. Computers and Electronics in Agriculture 197:106998


Li, Y., Miao, Y, Zhang, J., Cammarano, D., Li, S., Liu, X., Cao, Q. 2022. Improving nitrogen status estimation of winter wheat using random forest by integrating multi-source data across different agro-ecological zones. Frontiers in Plant Science 13:809892.


Lu, J., Wang, H., Miao, Y, Zhao, L., Zhao, G., Cao, Q., Kusnierek, K. 2022. Developing an active canopy sensor-based integrated precision rice management system for improving grain yield and quality, nitrogen use efficiency, and lodging resistance. Remote Sensing14(10):2440.


Yuan, Y., Miao, Y, Yuan, F., Ata-UI-Karim, S.T., Liu, X., Tian, Y., Cao, Q. 2022. Delineating soil nutrient management zones based on optimal sampling interval in medium and small-scale intensive farming systems. Precision Agriculture 23:538–558.


Dong, R., Miao, Y, Wang, X., Yuan, F., Kusnierek, K. 2022. Combining leaf fluorescence and active canopy reflectance sensing technologies to diagnose maize nitrogen status across growth stages. Precision Agriculture 23:939–960.


Li, D., Miao, Y, Bean, G.M., Sawyer, J.E., Fernandez, F.G., Kitchen, N.R., Shanahan, J.F. 2022. Corn nitrogen nutrition index prediction improved by integrating genetic, environmental, and management factors with active canopy sensing using machine learning. Remote Sensing 14(2):394.


Souza, E., Fernandez, F.G., Coulter, J., Wilson, M., Vetsch, J.A., Pagliari, P.H., Sharma, V. 2022. A Minnesota-wide assessment of critical pre-plant and in-season soil nitrate for adjusting nitrogen rate guidelines. ASA-CSSA-SSSA Annual Meeting.


Miao, Y. 2022. Advances in sensor-based precision nutrient management: An overview with a focus on precision nitrogen use efficiency. ASA-CSSA-SSSA Annual Meeting.

Manzoor, S, R Rashid, BP Panda, V Sharma, M Azhar. 2022. Green extraction of lutein from marigold petals. Ultrasonics Sonochemistry 85:105994.


Bhardwaj, A, T Alam, V Sharma, MS Alam, H Hamid, GK Deshwal. 2022. Biodegradable Alternatives in Food Packaging. Journal of Packaging Technology and Research 4(1):1–12.


Rastogi, S, V Kumari, V Sharma, FJ Ahmad. 2022. RGB Colorimetric Detection of Oxytocin in Food. Analytical Biochemistry.


Tiwari, A, G Singh, V Sharma, et al. 2022. Deciphering the Potential of Pre- and Pro-Vitamin D of Mushrooms. Molecules 27(17):5620.

Wen, C, Chen, H, Ma, Z, Zhang, T, C Yang, Su, H, Chen, H. 2022. Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting. Frontiers in Plant Science 13:973985.

Zhang, J, Min, A, Steffenson, BJ, Su, WH, Hirsch, CD, Anderson, J, Wei, J, C Yang. 2022. Wheat-net: An automatic dense wheat spike segmentation method based on an optimized hybrid task cascade model. Frontiers in Plant Science 13:200.

Wen, C, Wu, J, Chen, H, Su, H, Chen, X, Li, Z, C Yang. 2022. Wheat spike detection and counting in the field based on SpikeRetinaNet. Frontiers in Plant Science 13:821717.

Tahir, M, D Mulla. 2022. Evaluating long-term impacts of climate change on nitrate-N leaching in irrigated sandy soils using the EPIC model. Science of the Total Environment 812:151451.


Zermas, D, Morellas, V, Bazakos, M, D Mulla, Papanikolopoulos, N. 2022. Plant structure modeling for phenotype extraction using machine learning and 3D reconstruction in corn. Computers and Electronics in Agriculture 194:106725.


Gomaa, MN, Galzki, J, D Mulla. 2022. Mapping crop productivity zones in Minnesota using satellite imagery and agro-climatic data. Remote Sensing 14(4):923.


Mulla, D, Bohman, B, Zermas, D, Kaiser, D. 2022. Integration of high-resolution remote sensing and UAV imagery to guide variable-rate nitrogen fertilizer application. ASA, CSSA, and SSSA International Annual Meeting.


Rosen, CJ, Bohman, BJ, D Mulla, Miao, Y. 2022. Predicting potato nitrogen needs through combined use of remote sensing and machine learning. Frontiers in Agronomy 4:842132.


Paiao, GD, Yang, C, D Mulla, Fernández, FG, Nigon, TJ. 2022. Use of hyperspectral image vegetation indices to detect nitrogen stress in corn. Precision Agriculture 23(6):1295–1316.


Yang, W, Yang, C, D Mulla, Paiao, GD, Nigon, T, Fernández, FG. 2022. Improving early-season corn yield prediction using hyperspectral remote sensing and deep learning. Remote Sensing 14(21):5382.


Mulla, D, Jordan, N, Slotterback, CS, Kne, L. 2022. Expanding geodesign for agricultural watershed resilience: A case study of the Root River. Open Rivers: Rethinking Water, Place, and Community 17:1–18.

2021


Dong, R., Miao, Y, Wang, X., & Yuan, F. 2021. Canopy fluorescence sensing for in-season maize nitrogen status diagnosis. Remote Sensing 13(24):5141.


Cummings, C., Miao, Y, Paiao, G.D., Kang, S., & Fernandez, F.G. 2021. Corn nitrogen status diagnosis with an innovative multi-parameter crop circle phenom sensing system. Remote Sensing 13(3):401.


Wang, X., Miao, Y, Batchelor, W.D., Dong, R., & Kusnierek, K. 2021. Evaluating model-based strategies for in-season nitrogen management of maize using weather data fusion. Agricultural and Forest Meteorology 308–309:108564.


Dong, R., Miao, Y, Wang, X., Chen, Z., & Yuan, F. 2021. Improving maize nitrogen nutrition index prediction using leaf fluorescence sensor combined with environmental and management variables. Field Crops Research 269(15):108180.


Li, D., Miao, Y, Gupta, S., Rosen, C., Yuan, F., Wang, C., & Huang, Y. 2021. Improving potato yield prediction of different cultivars using UAV remote sensing and machine learning. Remote Sensing 13(16):3322.

Purohit, SR, SS Rana, R Idrishi, V Sharma, P Ghosh. 2021. A review on Edible Flowers. Future Foods.


Tiwari, A, G Singh, U Singh, L Sapra, V Rana, V Sharma, et al. 2021. Edible mushrooms for Vitamin D deficiency. International Journal of Food Science & Technology.


Naseer, B, V Sharma, SZ Hussain, J Bora. 2021. Functional Snack from Almond Press Cake. Letters in Applied NanoBioScience 11:3191–3207.


Sharma, V, P Sharma. 2021. Probiotics as Anti-Inflammatory Agents. Probiotic Research in Therapeutics, 123–139.

Yang, W, Nigon, T, Hao, Z, Dias Paiao, GD, Fernández, FG, David Mulla, C Yang. 2021. Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Computers and Electronics in Agriculture 184:106092.

Su, WH, C Yang, Dong, Y, Johnson, R, Page, R, Szinyei, T, Hirsch, CD. 2021. Hyperspectral imaging and improved feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels. Food Chemistry 343:128507.

Mahdavian, A, Minaei, S, Marchetto, PM, Almasganj, F, Rahimi, S, C Yang. 2021. Acoustic features of vocalization signal in poultry health monitoring. Applied Acoustics 175:107756.

Nigon, T, C Yang, DJ Mulla, Kaiser, DE. 2021. Computing uncertainty in the optimum nitrogen rate using a generalized cost function. Computers and Electronics in Agriculture 167:105030.

Yang, W, Nigon, T, Hao, Z, Paiao, GD, Fernández, FG, D Mulla, Yang, C. 2021. Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Computers and Electronics in Agriculture 184:106092.


Nigon, T, Paiao, GD, D Mulla, Fernández, FG, Yang, C. 2021. The influence of aerial hyperspectral image processing workflow on nitrogen uptake prediction accuracy in maize. Remote Sensing 14(1):132.


Tahir, M, D Mulla. 2021. Epic model assessment of evapotranspiration, deep percolation, and nitrate-N leaching losses under intermediate wheatgrass and corn-soybean in Minnesota. ASA, CSSA, and SSSA International Annual Meeting.


Rosen, C, Bohman, B, D Mulla, Miao, Y. 2021. Method to predict crop nitrogen status using remote sensing. US Patent App. 16/514,537.


Galzki, J, Olmanson, L, D Mulla. 2021. Historical assessment of improvements in management practices associated with corn production. University of Minnesota Report.


Koch, RL, MacRae, IV, Marston, ZPD, D Mulla. 2021. Remote-sensing-based detection of soybean aphid induced stress in soybean. US Patent 11,003,908.


Mulla, D, Miao, Y. 2021. Precision farming. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing, 161–178.


Ouarani, M, Brahim, YA, D Mulla, Rafik, A, Azennoud, K, Bouchaou, L. 2021. A comprehensive overview of groundwater salinization and recharge processes in a semi-arid coastal aquifer (Essaouira, Morocco). Journal of Hydrology: Regional Studies 49:101501.

2020


Cammarano, D., Zha, H., Wilson, L., Li, Y., Batchelor, W.D., & Miao, Y. 2020. A remote sensing-based approach to management zone delineation in small scale farming systems. Agronomy 10(11):1767.


Wang, X., Miao, Y, Dong, R., Chen, Z., Kusnierek, K., Mi, G., & Mulla, D. J. 2020. Economic optimal nitrogen rate variability of maize in response to soil and weather conditions: Implications for site-specific nitrogen management. Agronomy 10(9):1237.


Lu, J., Miao, Y, Shi, W., Li, J., Hu, X., Chen, Z., & Kusnierek, K. 2020. Developing a proximal active canopy sensor-based precision nitrogen management strategy for high-yielding rice. Remote Sensing 12(9):1440.


Lu, J., Miao, Y, Shi, W., Li, J., Hu, X., Chen, Z., & Kusnierek, K. 2020. RapidSCAN active canopy sensor-based precision nitrogen management strategies for improving rice nitrogen efficiency. Remote Sensing 12(9):1440.


Dong, R., Miao, Y, Wang, X., Chen, Z., Yuan, F., Zhang, W., & Li, H. 2020. Estimating plant nitrogen concentration of maize using a leaf fluorescence sensor across growth stages. Remote Sensing 12(7):1139.


Zha, H., Miao, Y, Wang, T., Li, Y., Zhang, J., Sun, W., & Kusnierek, K. 2020. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sensing 12(2):215.


Miao, Y. 2020. Minnesota and Indiana corn growers needed for on-farm precision nitrogen management research project. Minnesota Crop News, Saint Paul.

Rudra, SG, Hanan, E, Sagar, VR, Bhardwaj, R, Basu, S, V Sharma. 2020. Mayonnaise with Pea Pod Powder. Journal of Food Measurement and Characterization 14:2402–2413.


Kumar, A, Rani, P, Kumar, R, V Sharma, SR Purohit. 2020. COVID-19 prediction and socio-economic correlation. Diabetes & Metabolic Syndrome 14(5):1231–1240.


Hanan, E, V Sharma, FJ Ahmad. 2020. Nutritional Composition of Quince. Journal of Food Processing & Technology 11(831):1–13.


Shubli Bashir, DM, Yaseen, M, V Sharma, et al. 2020. Properties of Gluten-Free Cookies. Biointerface Research in Applied Chemistry 10(5):6565–6576.

Xie, C, C Yang. 2020. A review on plant high-throughput phenotyping traits using UAV-based sensors. Computers and Electronics in Agriculture 178:105731.

Su, WH, Zhang, J, C Yang, Page, R, Szinyei, T, Hirsch, CD, Steffenson, BJ. 2020. Automatic evaluation of wheat resistance to fusarium head blight using dual mask-RCNN deep learning frameworks in computer vision. Remote Sensing 13(1):26.

Moghimi, A, C Yang, Anderson, JA. 2020. Aerial hyperspectral imagery and deep neural networks for high-throughput yield phenotyping in wheat. Computers and Electronics in Agriculture 172:105299.

Nigon, TJ, C Yang, Dias Paiao, GD, DJ Mulla, Knight, JF, Fernández, FG. 2020. Prediction of early season nitrogen uptake in maize using high-resolution aerial hyperspectral imagery. Remote Sensing 12(8):1234.

Zermas, D, Morellas, V, D Mulla, Papanikolopoulos, N. 2020. 3D model processing for high throughput phenotype extraction–the case of corn. Computers and Electronics in Agriculture 172:105047.


Wang, X, Miao, Y, Dong, R, Chen, Z, Mi, G, D Mulla. 2020. Economic optimal nitrogen rate variability of maize in response to soil and weather conditions: Implications for site-specific nitrogen management. Agronomy 10(9):1237.


Fan, K, Li, F, Chen, X, Li, Z, D Mulla. 2020. Nitrogen balance index prediction of winter wheat by canopy hyperspectral transformation and machine learning. Remote Sensing 14(14):3504.


Mulla, D, Zermas, D, Kaiser, D, Bazakos, M, Papanikolopoulos, N. 2020. Early detection of nitrogen deficiency in corn using high resolution remote sensing and computer vision. ASA, CSSA, and SSSA International Annual Meetings.


Mulla, D, Kaiser, D. 2020. Comparison of real-time N stress sensors and remote sensing from unmanned aerial vehicles for precision management of N fertilizer and improvement of water quality. ASA, CSSA, and SSSA International Annual Meetings.


Tahir, M, D Mulla. 2020. Upscaling EPIC model water quality simulations from field measurements to the watershed scale under different crop rotations in the Bonanza Valley region of Minnesota. ASA, CSSA, and SSSA International Annual Meetings.


Gomaa, MN, D Mulla, Galzki, JC, Sheikho, KM, Alhazmi, NM, Mohamed, HE. 2020. Red Sea MODIS estimates of chlorophyll a and phytoplankton biomass risks to Saudi Arabian coastal desalination plants. Journal of Marine Science and Engineering 9(1):11.


Feyereisen, GW, Spokas, KA, Strock, JS, D Mulla, Ranaivoson, A. 2020. Nitrate removal and nitrous oxide production from upflow and downflow column woodchip bioreactors. Agricultural & Environmental Letters 5(1):e20024.


Ribeiro, AV, Lacerda, LN, Windmuller-Campione, MA, Cira, TM, D Mulla, ... 2020. Economic-threshold-based classification of soybean aphid infestations using Sentinel-2 satellite data. Crop Protection 177:106557.


Li, X, Nieber, J, Runkel, A, Magner, J, Wilson, B, D Mulla, Kuehner, KJ. 2020. Modeling travel time distributions within karst and bedrock aquifer systems of southeastern Minnesota. Geological Society of America Abstracts 52:348327.


Barnes, R, Lehman, C, D Mulla. 2020. Distributed parallel D8 upslope area calculation in digital elevation models. arXiv preprint arXiv:1605.05773.


Mulla, D, Pennington, D, Polasky, S, Taff, S, Dalzell, B. 2020. Ch. 4: Designing and deploying collaborative models for multifunctional landscape design: Geodesign in practice. In Innovations in Collaborative Modeling.

2019


Chen, Z., Miao, Y., Lu, J., Zhou, L., Li, Y., Zhang, H., Kusnierek, K. 2019. In-season diagnosis of winter wheat nitrogen status in smallholder farmer fields across a village using unmanned aerial vehicle-based remote sensing. Agronomy 9(10):619.


Huang, S., Miao, Y., Yuan, F., Cao, Q., Ye, H., Lenz-Wiedemann, V.I.S., Bareth, G. 2019. In-season diagnosis of rice nitrogen status using proximal fluorescence sensing. Remote Sensing 11(12):1436.


Lu, J., Miao, Y., Shi, W., Li, J., Yuan, F. 2019. Combining active canopy sensor and SPAD meter for improving in-season nitrogen management in rice. Sustainability 11(1):200.


Miao, Y. 2019. Improving nutrient use efficiency with minimal environmental risks using active canopy sensors. ASA-CSSA-SSSA Annual Meeting Proceedings, San Antonio, TX, USA.


Miao, Y. 2019. Applications of remote sensing for in-season diagnosis of crop nitrogen status. ASA-CSSA-SSSA Annual Meeting Proceedings, San Antonio, TX, USA.


Lu, J., Miao, Y., Li, J., Yuan, F. 2019. Combining active canopy sensor and SPAD meter for in-season rice nitrogen management. In: Precision Agriculture '19, Proceedings of the 12th European Conference on Precision Agriculture, Montpellier, France. Wageningen Academic Publishers.

Malik, VS, Bora, J. 2019. Growth studies of lactic acid bacteria in vegetable juices. Journal of Food Processing and Preservation.


Bhardwaj, A, Tiwari, A, V Sharma, et al. 2019. Emerging Trends in Nanobiosensor. Nanobiotechnology in Bioformulations, 419–447.


Sharma, V, Bhardwaj, A. 2019. SEM in Food Quality. Evaluation Technologies for Food Quality, 743–761.

Qiu, R, C Yang, Moghimi, A, Zhang, M, Steffenson, BJ, Hirsch, CD. 2019. Detection of fusarium head blight in wheat using a deep neural network and color imaging. Remote Sensing 11(22):2658.

Yang, W, C Yang, Hao, Z, Xie, C, Li, M. 2019. Diagnosis of plant cold damage based on hyperspectral imaging and convolutional neural network. IEEE Access 7:118239–118248.

Mahdavian, A, Minaei, S, C Yang, Almasganj, F, Rahimi, S, Marchetto, PM. 2019. Ability evaluation of a voice activity detection algorithm in bioacoustics: A case study on poultry calls. Computers and Electronics in Agriculture 168:105100.

Wang, C, Li, X, Wang, L, C Yang, Chen, X, Li, M, Ma, S. 2019. Prediction of N, P, and K contents in sugarcane leaves by VIS-NIR spectroscopy and modeling of NPK interaction effects. Transactions of the ASABE 62(6):1427–1433.

Jungers, JM, DeHaan, LR, D Mulla, Sheaffer, CC, Wyse, DL. 2019. Reduced nitrate leaching in a perennial grain crop compared to maize in the Upper Midwest, USA. Agriculture, Ecosystems & Environment 272:63–73.


Wang, X, Miao, Y, Dong, R, Guan, Y, D Mulla. 2019. Evaluating the potential benefits of field-specific nitrogen management of spring maize in northeast China. Precision Agriculture 19:877–882

.
Bohman, BJ, Carl, JR, David, JM. 2019. Evaluating remote sensing based adaptive nitrogen management for potato production. 14th International Conference on Precision Agriculture, 1–6.


Bohman, BJ, Rosen, CJ, D Mulla. 2019. Managing in-season N applications using remote sensing and N nutrition index for potato. ASA, CSSA, and SSSA International Annual Meetings.


Bohman, BJ, Rosen, CJ, D Mulla. 2019. Identifying optimal nitrogen use efficiency for agronomic and environmental outcomes in potato using the nitrogen nutrition index. ASA, CSSA, and SSSA International Annual Meetings.


Laacouri, A, D Mulla, Vetsch, JA. 2019. Variable rate nitrogen sidedress applications improve nitrogen use efficiency. SSSA International Soils Meeting.


Jia, X, Khandelwal, A, D Mulla, Pardey, PG, Kumar, V. 2019. Bringing automated, remote-sensed, machine learning methods to monitoring crop landscapes at scale. AGU Fall Meeting Abstracts.


Mulla, D, Belmont, S. 2019. Identifying and characterizing ravines with GIS terrain attributes for precision conservation. In Precision Conservation: Geospatial Techniques for Agricultural and Natural Resource Management.


Gomaa, MN, Al-Hazmi, MA, Mohamed, HE, D Mulla, Hannachi, I. 2019. A model to predict HAB occurrence near desalination plants in the Red Sea. Desalination and Water Treatment 129:1–13.

2018


Moghimi, A., Yang, C., Marchetto, P.M. 2018. Ensemble feature selection for plant phenotyping: A journey from hyperspectral to multispectral imaging. IEEE Access 6:56870–56884. DOI: 10.1109/ACCESS.2018.2872801


Christianson, R., Christianson, L., Wong, C., Helmers, M., McIsaac, G., Mulla, D. J., McDonald, M. 2018. Beyond the nutrient strategies: Common ground to accelerate agricultural water quality improvement in the upper Midwest. Journal of Environmental Management 206:1072–1080.


Moghimi, A., Yang, C., Miller, M.E., Kianian, S.F., Marchetto, P.M. 2018. A novel approach to assess salt stress tolerance in wheat using hyperspectral imaging. Frontiers in Plant Science 9:1182. DOI: 10.3389/fpls.2018.01182


Onojeghuo, A.O., Blackburn, G.A., Wang, Q., Atkinson, P.M., Kindred, D., Miao, Y. 2018. Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. International Journal of Remote Sensing 39(4):1042–1067.


Miao, Y, Mulla, D. J., Robert, P.C. 2018. An integrated approach to site-specific management zone delineation. Frontiers of Agricultural Sciences and Engineering 5(4):432–441.


Zhang, J., Miao, Y, Batchelor, W.D., Lu, J., Wang, H., Kang, S. 2018. Improving high-latitude rice nitrogen management with the CERES-RICE crop model. Agronomy 8(11):263.


Cao, Q., Miao, Y, Shen, J., Yuan, F., Cheng, S., Cui, Z. 2018. Evaluating two Crop Circle active canopy sensors for in-season diagnosis of winter wheat nitrogen status. Agronomy 8(10):201.


Liu, C., Fang, Z., Chen, Z., Zhou, L., Yue, X., Wang, Z., et al. 2018. Nitrogen nutrition diagnosis of winter wheat based on ASD FieldSpec3. Transactions of the Chinese Society of Agricultural Engineering 34(19):162–169.


Huang, S., Miao, Y, Cao, Q., Yao, Y., Zhao, G., Yu, W., et al. 2018. Critical nitrogen dilution curve for rice nitrogen status diagnosis in Northeast China. Pedosphere 28(5):814–822.


Shen, Q., Wen, Z., Dong, Y., Li, H., Miao, Y, Shen, J. 2018. The responses of root morphology and phosphorus-mobilizing exudations in wheat to increasing shoot phosphorus concentration. AoB PLANTS 10(5):ply054.


Onojeghuo, A.O., Blackburn, G.A., Wang, Q., Atkinson, P.M., Kindred, D., Miao, Y. 2018. Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series. GIScience & Remote Sensing 55(5):659–677. DOI: 10.1080/15481603.2018.1423725


Susko, A.Q., Gilbertson, F., Heuschele, D.J., Smith, K., Marchetto, P. 2018. An automatable, field camera track system for phenotyping crop lodging and crop movement. HardwareX 4:1–13. DOI: 10.1016/j.ohx.2018.e00029


Miao, Y. 2018. Improving nitrogen use efficiency with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system. ASA/CSSA/SSSA Annual Meeting, Baltimore, MD, USA.


Miao, Y. 2018. Integrated precision agriculture systems to enhance productivity and sustainability. ASA/CSSA/SSSA Annual Meeting, Baltimore, MD, USA.

Muzzafar, A, V Sharma. 2018. Microencapsulation of probiotics in biscuits. Journal of Food Measurement and Characterization 12:2193–2201.


Gangwar, AS, Bhardwaj, A, V Sharma. 2018. Fermentation of tender coconut water. International Journal of Food Studies 7(1).

Moghimi, A, C Yang, PM Marchetto. 2018. Ensemble feature selection for plant phenotyping: a journey from hyperspectral to multispectral imaging. IEEE Access 6:56870–56884.

Moghimi, A, C Yang, ME Miller, SF Kianian, PM Marchetto. 2018. A novel approach to assess salt stress tolerance in wheat using hyperspectral imaging. Frontiers in Plant Science 9:1182.

Nigon, TJ, C Yang, DJ Mulla. 2018. Utilization of spatially precise measurements to autocalibrate the EPIC agroecosystem model.

Wang, L, Li, X, Wang, C, Zhou, Y, C Yang, Ai, J. 2018. Canopy center and plant quantity detection of sugarcane based on aerial visible images. ASABE Annual International Meeting, 1.

Christianson, R, Christianson, L, Wong, C, Helmers, M, McIsaac, G, D Mulla, ... 2018. Beyond the nutrient strategies: Common ground to accelerate agricultural water quality improvement in the upper Midwest. Journal of Environmental Management 206:1072–1080.


Zermas, D, Morellas, V, D Mulla, Papanikolopoulos, N. 2018. Extracting phenotypic characteristics of corn crops through the use of reconstructed 3D models. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems.


Mulla, D, Perillo, CA, Cogger, CG. 2018. A site‐specific farm‐scale GIS approach for reducing groundwater contamination by pesticides. Journal of Environmental Quality 25(3):419–425.


Mulla, D, Bhatti, AU, Kunkel, R. 2018. Methods for removing spatial variability from field research trials. In Dryland Agriculture: Strategies for Sustainability, Springer.


Bohman, BJ, Carl, JR, David, JM. 2018. Evaluating remote sensing based adaptive nitrogen management for potato production. 14th International Conference on Precision Agriculture, 1–6.


Bohman, BJ, Rosen, CJ, D Mulla. 2018. Epic modeling to quantify rye cover crop effects on nitrate-N leaching under corn-corn, corn-soybean, and soybean-corn rotations on irrigated sands in Minnesota. ASA, CSSA, and SSSA International Annual Meeting.


Mulla, D, Zermas, D, Morellas, V, Papanikolopoulos, N. 2018. 3D model image processing for high throughput phenotype extraction—the case of corn. ASA, CSSA, and SSSA International Annual Meeting.


Bohman, BJ, Rosen, CJ, D Mulla. 2018. A modeled yield response curve to nitrogen rate and climate variability for potato. ASA, CSSA, and SSSA International Annual Meeting.


Nigon, TJ, Yang, C, D Mulla. 2018. Utilization of spatially precise measurements to autocalibrate the EPIC agroecosystem model. ASA, CSSA, and SSSA International Annual Meeting.


Jordan, N, Slotterback, CS, D Mulla, Kne, L. 2018. Lake Pepin watershed full cost accounting project. University of Minnesota Final Report.


Lewandowski, A, y Garcia, AG, Lenhart, C, D Mulla, Pradhananga, A, ... 2018. The future of agriculture in a water‐rich state. Open Rivers: Rethinking Water, Place, and Community 10:59–77.


Miao, Y, Khosla, R, D Mulla. 2018. Remote sensing for precision nitrogen management. MDPI-Multidisciplinary Digital Publishing Institute.


Mulla, D, Bohman, B, Spokas, KA, Roser, MB. 2018. Combining denitrification and phosphorus uptake in edge-of-field bioreactors. ASA, CSSA and SSSA International Annual Meetings.

2017


Zhao, Q., Brocks, S., Lenz-Wiedemann, V.I., Miao, Y, Zhang, F., & Bareth, G. 2017. Detecting spatial variability of paddy rice yield by combining the DNDC model with high resolution satellite images. Agricultural Systems 152:47–57.


Cao, Q., Miao, Y, Li, F., Gao, X., Liu, B., Lu, D., & Chen, X. 2017. Developing a new Crop Circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain. Precision Agriculture 18(1):2–18.


Lu, J., Miao, Y, Shi, W., Li, J., & Yuan, F. 2017. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor. Scientific Reports 7(1):14073.


Zhang, J., Miao, Y, & Batchelor, W.D. 2017. Evaluation of the CERES-Rice model for precision nitrogen management of rice in Northeast China. Advances in Animal Biosciences: Precision Agriculture (ECPA) 8(2):328–332.


Cao, Q., Miao, Y, Feng, G., Gao, X., Liu, B., Liu, Y., et al. 2017. Improving nitrogen use efficiency with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system. Field Crops Research 214:365–372.


Huang, S., Miao, Y, Yuan, F., Gnyp, M.L., Yao, Y., Cao, Q., et al. 2017. Potential of RapidEye and WorldView-2 satellite data for improving rice nitrogen status monitoring at different growth stages. Remote Sensing 9(3):227.


Lu, J., Miao, Y, Shi, W., Li, J., Wan, J., Gao, X., et al. 2017. Using portable RapidSCAN active canopy sensor for rice nitrogen status diagnosis. Advances in Animal Biosciences (ECPA Special Issue) 8(2):349–352.


Zhou, L., Chen, G., Miao, Y, Zhang, H., Chen, Z., Xu, L., & Guo, L. 2017. Evaluating a Crop Circle active sensor-based in-season nitrogen management algorithm in different winter wheat cropping systems. Advances in Animal Biosciences (ECPA Special Issue) 8(2):364–367.


Huang, S., Miao, Y, Yuan, F., Cao, Q., Ye, H., Lenz-Wiedemann, V., et al. 2017. Proximal fluorescence sensing for in-season diagnosis of rice nitrogen status. Advances in Animal Biosciences (ECPA Special Issue) 8(2):343–348.


Miao, Y, Zhang, F., & Wang, F. 2017. Organic Farming: China. In: Encyclopedia of Soil Science, 3rd ed., pp. 1618–1620. Taylor & Francis.


Jordan, N., Mulla, D. J, Slotterback, C., Runck, B., & Hays, C. 2017. Multifunctional agricultural watersheds for climate adaptation in the Midwest USA: commentary. Renewable Agriculture and Food Systems. https://doi.org/10.1017/S1742170517000655


Galzki, J., Mulla, D. J, & Meier, E. 2017. Mapping potential foodsheds using regionalized consumer expenditure data for Southeastern Minnesota. Journal of Agriculture, Food Systems, and Community Development 7(3):1–16.

Xie, C, C Yang, Y He. 2017. Hyperspectral imaging for classification of healthy and gray mold diseased tomato leaves with different infection severities. Computers and Electronics in Agriculture 135:154–162.

Nigon, TJ, Laacouri, A, C Yang, DJ Mulla. 2017. Spectral imagery to estimate leaf area index and above ground biomass. ASA, CSSA and SSSA International Annual.

Nawar, S, Corstanje, R, Halcro, G, D Mulla, Mouazen, AM. 2017. Delineation of soil management zones for variable-rate fertilization: A review. Advances in Agronomy 143:175–245.


El Garouani, A, D Mulla, El Garouani, S, Knight, J. 2017. Analysis of urban growth and sprawl from remote sensing data: Case of Fez, Morocco. International Journal of Sustainable Built Environment 6(1):160–169.


Miao, Y, D Mulla, Robert, PC. 2017. Spatial variability of soil properties, corn quality and yield in two Illinois, USA fields: implications for precision corn management. Precision Agriculture 7(1):5–20.


Painter, KM, Young, DL, Granatstein, DM, D Mulla. 2017. Combining alternative and conventional systems for environmental gains. American Journal of Alternative Agriculture 10(2):88–96.


Galzki, JC, D Mulla, Peters, CJ. 2017. Mapping the potential of local food capacity in Southeastern Minnesota. Renewable Agriculture and Food Systems 30(4):364–372.


Jungers, JM, DeHaan, LR, D Mulla, Sheaffer, CC, Wyse, DL. 2017. Limited nitrate leaching beneath intermediate wheatgrass. ASA, CSSA, and SSSA International Annual Meeting.


Xie, Y, Yang, KS, Shekhar, S, Dalzell, B, D Mulla. 2017. Spatially Constrained Geodesign Optimization (GOP) for improving agricultural watershed sustainability. AAAI Workshops.


Mulla, D, Belmont, S. 2017. Identifying and characterizing ravines with GIS terrain attributes for precision conservation. Precision Conservation: Geospatial Techniques for Agricultural and Natural Resource Management, 37–51.


Ranaivoson, A, Strock, J, Feyereisen, GW, Spokas, KA, D Mulla, Roser, M. 2017. Novel design and field performance of phosphorus-sorbing and denitrifying bioreactors. ASA, CSSA and SSSA International Annual Meeting.


Nigon, TJ, Laacouri, A, Yang, C, D Mulla. 2017. Spectral imagery to estimate leaf area index and above ground biomass. ASA, CSSA and SSSA International Annual Meeting.


Bohman, BJ, Nigon, TJ, Rosen, CJ, D Mulla. 2017. Comparison of strategies to calculate nitrate leaching load on sandy soils. ASA, CSSA and SSSA International Annual Meeting.


Laacouri, A, D Mulla, Nigon, TJ, Vetsch, JA. 2017. Agronomic, environmental and economic benefits of site-specific nitrogen management for maize (Zea mays L.). ASA, CSSA and SSSA International Annual Meeting.


Nigon, TJ, Bohman, BJ, Rosen, CJ, D Mulla. 2017. Utilizing remote sensing for variable-rate nitrogen and irrigation management in potato. ASA, CSSA and SSSA International Annual Meeting.


Bohman, BJ, Rosen, CJ, D Mulla. 2017. Variable rate nitrogen and reduced irrigation for potato production in Minnesota. ASA, CSSA and SSSA International Annual Meeting.


Jordan, N, Slotterback, CS, D Mulla, Kne, L. 2017. Agriculture and the river: The university’s role in societal learning, innovation, and action. Open Rivers: Rethinking Mississippi 6:61–71.


Xie, Y, Runck, BC, Shekhar, S, Kne, L, D Mulla, Jordan, N, Wiringa, P. 2017. Collaborative geodesign and spatial optimization for fragmentation-free land allocation. ISPRS International Journal of Geo-Information 6(7):226.


Feyereisen, GW, Spokas, KA, Strock, J, D Mulla, Ranaivoson, A. 2017. What direction should we flow? Flow direction and N-cycling in bioreactors. ASA, CSSA and SSSA International Annual Meeting.

2016


Xia, T., Miao, Y., Wu, D., Shao, H., Khosla, R., & Mi, G. 2016. Active optical sensing of spring maize for in-season diagnosis of nitrogen status based on nitrogen nutrition index. Remote Sensing 8(7):605.


Hutt, C., Koppe, W., Miao, Y., & Bareth, G. 2016. Best accuracy land use/land cover (LULC) classification to derive crop types using multitemporal, multisensor, and multi-polarization SAR satellite images. Remote Sensing 8(8):684.


Cao, Q., Miao, Y., Shen, J., Yu, W., Yuan, F., Cheng, S., et al. 2016. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor. Precision Agriculture 17(2):136–154.


Zhang, W., Cao, G., Li, X., Zhang, H., Wang, C., Liu, Q., et al. 2016. Closing yield gaps in China by empowering smallholder farmers. Nature 537(7622):671–674.


Mulla, D.J., & Miao, Y. 2016. Chapter 7: Precision farming. In: Thenkabail, P.S. (Ed.), Remote Sensing Handbook Volume III, pp. 161–173. Taylor & Francis.


Wang, X., Miao, Y., Guan, Y., Xia, T., Lu, J., & Mulla, D.J. 2016. An evaluation of two active canopy sensor systems for non-destructive estimation of spring maize biomass. Proceedings of the Fifth International Conference on Agro-Geoinformatics:1–6.


Lu, J., Miao, Y., Huang, S., & Shi, W. 2016. In-season diagnosis of rice nitrogen status using Crop Circle active canopy sensor and UAV remote sensing. Proceedings of the 13th International Conference on Precision Agriculture (Online).


Huang, S., Miao, Y., Yuan, F., Gnyp, M.L., Yao, Y., Cao, Q., et al. 2016. Potential improvement in rice nitrogen status monitoring using RapidEye and WorldView-2 satellite remote sensing. Proceedings of the 13th International Conference on Precision Agriculture (Online).

Rafiq, S, V Sharma, A Nazir, R Rashid, SA Sofi, F Nazir, GA Nayik. 2016. Development of probiotic carrot juice. Journal of Nutrition and Food Sciences 6(4):1–5.

Xie, C, C Yang, Y He. 2016. Detection of grey mold disease on tomato leaves at different infected stages using hyperspectral imaging. 2016 ASABE Annual International Meeting, 1.

Boler, LJ, C Yang, C Xie, GR Sands. 2016. Measuring crop response to subsurface drainage with satellite remote sensing. 10th International Drainage Symposium Conference, 6–9 September 2016.

Tokekar, P, J Vander Hook, D Mulla, V Isler. 2016. Sensor planning for a symbiotic UAV and UGV system for precision agriculture. IEEE Transactions on Robotics 32(6):1498–1511.


Mulla, D, R Khosla. 2016. Historical evolution and recent advances in precision farming. Soil-Specific Farming Precision Agriculture, 1–35.


Slotterback, CS, B Runck, DG Pitt, L Kne, NR Jordan, D Mulla, C Zerger. 2016. Collaborative Geodesign to advance multifunctional landscapes. Landscape and Urban Planning 156:71–80.
Mulla, D. 2016. Spatial variability in precision agriculture. Encyclopedia of GIS, 1–8.


Patil, VC, KA Al-Gaadi, R Madugundu, E Tola, S Marey, D Mulla, ... 2016. Response of Rhodes grass to variable rate application of irrigation water and fertilizer nitrogen. Pakistan Journal of Agricultural Sciences 53(3).


Zermas, D, Teng, D, Stanitsas, P, Bazakos, M, Kaiser, D, Morellas, V, D Mulla, ... 2016. Automation solutions for the evaluation of plant health in corn fields. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems.


Wang, X, Miao, Y, Dong, R, Chen, Z, D Mulla. 2016. Developing active canopy sensor-based precision nitrogen management strategies for maize in Northeast China. Sustainability 11(3):706.


Turner, PA, Griffis, TJ, D Mulla, Baker, JM, Venterea, RT. 2016. A geostatistical approach to identify and mitigate agricultural nitrous oxide emission hotspots. Science of the Total Environment 572:442–449.


Moon, JY, Apland, J, Folle, S, D Mulla. 2016. A watershed level economic analysis of cellulosic biofuel feedstock production with consideration of water quality. Sustainable Agriculture Research 5(3).


Tahir, M, Hassan, AU, Maqbool, S, Barber, B, Koskinen, WC, Peng, X, D Mulla. 2016. Sorption and leaching potential of isoproturon and atrazine in low organic carbon soil of Pakistan under a wheat-maize rotation. Pedosphere 26(5):687–698.


Nangia, V, Charre, S, Inozemtseva, A, Srinivasan, R, D Mulla. 2016. Agricultural water management and ecosystem services in the Aral-Syrdarya watershed, Kazakhstan. ICARDA Report.


Runck, B, Pitt, DG, Kne, L, Jordan, NR, D Mulla, Zerger, C. 2016. Collaborative Geodesign to advance multifunctional landscapes. University of Minnesota Publication.


Taylor, PJ. 2016. Navigation bar. Archaeology 14.